diff --git a/MAINTAINERS b/MAINTAINERS
index c265a5fe48481f548629079cb529137e0a377f31..572fe4252ac4620ec3d896653da23dd46601d6c2 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -4776,6 +4776,12 @@ L:	linux-edac@vger.kernel.org
 S:	Maintained
 F:	drivers/edac/mpc85xx_edac.[ch]
 
+EDAC-PND2
+M:	Tony Luck <tony.luck@intel.com>
+L:	linux-edac@vger.kernel.org
+S:	Maintained
+F:	drivers/edac/pnd2_edac.[ch]
+
 EDAC-PASEMI
 M:	Egor Martovetsky <egor@pasemi.com>
 L:	linux-edac@vger.kernel.org
diff --git a/drivers/edac/Kconfig b/drivers/edac/Kconfig
index 82d85cce81f815b9b8bf70352e3bdeeece2d7d41..be3eac6ad54d897ef031e1b50194c904842450be 100644
--- a/drivers/edac/Kconfig
+++ b/drivers/edac/Kconfig
@@ -259,6 +259,15 @@ config EDAC_SKX
 	  Support for error detection and correction the Intel
 	  Skylake server Integrated Memory Controllers.
 
+config EDAC_PND2
+	tristate "Intel Pondicherry2"
+	depends on EDAC_MM_EDAC && PCI && X86_64 && X86_MCE_INTEL
+	help
+	  Support for error detection and correction on the Intel
+	  Pondicherry2 Integrated Memory Controller. This SoC IP is
+	  first used on the Apollo Lake platform and Denverton
+	  micro-server but may appear on others in the future.
+
 config EDAC_MPC85XX
 	tristate "Freescale MPC83xx / MPC85xx"
 	depends on EDAC_MM_EDAC && FSL_SOC
diff --git a/drivers/edac/Makefile b/drivers/edac/Makefile
index 88e472e8b9a918e36e65b4385c9c412f92c7cea3..587107e909967d56056df688624474bca4da3cac 100644
--- a/drivers/edac/Makefile
+++ b/drivers/edac/Makefile
@@ -32,6 +32,7 @@ obj-$(CONFIG_EDAC_I7300)		+= i7300_edac.o
 obj-$(CONFIG_EDAC_I7CORE)		+= i7core_edac.o
 obj-$(CONFIG_EDAC_SBRIDGE)		+= sb_edac.o
 obj-$(CONFIG_EDAC_SKX)			+= skx_edac.o
+obj-$(CONFIG_EDAC_PND2)			+= pnd2_edac.o
 obj-$(CONFIG_EDAC_E7XXX)		+= e7xxx_edac.o
 obj-$(CONFIG_EDAC_E752X)		+= e752x_edac.o
 obj-$(CONFIG_EDAC_I82443BXGX)		+= i82443bxgx_edac.o
diff --git a/drivers/edac/pnd2_edac.c b/drivers/edac/pnd2_edac.c
new file mode 100644
index 0000000000000000000000000000000000000000..14d39f05226efda72de869a977388482efff783e
--- /dev/null
+++ b/drivers/edac/pnd2_edac.c
@@ -0,0 +1,1542 @@
+/*
+ * Driver for Pondicherry2 memory controller.
+ *
+ * Copyright (c) 2016, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * [Derived from sb_edac.c]
+ *
+ * Translation of system physical addresses to DIMM addresses
+ * is a two stage process:
+ *
+ * First the Pondicherry 2 memory controller handles slice and channel interleaving
+ * in "sys2pmi()". This is (almost) completley common between platforms.
+ *
+ * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
+ * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/edac.h>
+#include <linux/mmzone.h>
+#include <linux/smp.h>
+#include <linux/bitmap.h>
+#include <linux/math64.h>
+#include <linux/mod_devicetable.h>
+#include <asm/cpu_device_id.h>
+#include <asm/intel-family.h>
+#include <asm/processor.h>
+#include <asm/mce.h>
+
+#include "edac_mc.h"
+#include "edac_module.h"
+#include "pnd2_edac.h"
+
+#define APL_NUM_CHANNELS	4
+#define DNV_NUM_CHANNELS	2
+#define DNV_MAX_DIMMS		2 /* Max DIMMs per channel */
+
+enum type {
+	APL,
+	DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
+};
+
+struct dram_addr {
+	int chan;
+	int dimm;
+	int rank;
+	int bank;
+	int row;
+	int col;
+};
+
+struct pnd2_pvt {
+	int dimm_geom[APL_NUM_CHANNELS];
+	u64 tolm, tohm;
+};
+
+/*
+ * System address space is divided into multiple regions with
+ * different interleave rules in each. The as0/as1 regions
+ * have no interleaving at all. The as2 region is interleaved
+ * between two channels. The mot region is magic and may overlap
+ * other regions, with its interleave rules taking precedence.
+ * Addresses not in any of these regions are interleaved across
+ * all four channels.
+ */
+static struct region {
+	u64	base;
+	u64	limit;
+	u8	enabled;
+} mot, as0, as1, as2;
+
+static struct dunit_ops {
+	char *name;
+	enum type type;
+	int pmiaddr_shift;
+	int pmiidx_shift;
+	int channels;
+	int dimms_per_channel;
+	int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
+	int (*get_registers)(void);
+	int (*check_ecc)(void);
+	void (*mk_region)(char *name, struct region *rp, void *asym);
+	void (*get_dimm_config)(struct mem_ctl_info *mci);
+	int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
+				   struct dram_addr *daddr, char *msg);
+} *ops;
+
+static struct mem_ctl_info *pnd2_mci;
+
+#define PND2_MSG_SIZE	256
+
+/* Debug macros */
+#define pnd2_printk(level, fmt, arg...)			\
+	edac_printk(level, "pnd2", fmt, ##arg)
+
+#define pnd2_mc_printk(mci, level, fmt, arg...)	\
+	edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
+
+#define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
+#define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
+#define SELECTOR_DISABLED (-1)
+#define _4GB (1ul << 32)
+
+#define PMI_ADDRESS_WIDTH	31
+#define PND_MAX_PHYS_BIT	39
+
+#define APL_ASYMSHIFT		28
+#define DNV_ASYMSHIFT		31
+#define CH_HASH_MASK_LSB	6
+#define SLICE_HASH_MASK_LSB	6
+#define MOT_SLC_INTLV_BIT	12
+#define LOG2_PMI_ADDR_GRANULARITY	5
+#define MOT_SHIFT	24
+
+#define GET_BITFIELD(v, lo, hi)	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
+#define U64_LSHIFT(val, s)	((u64)(val) << (s))
+
+#ifdef CONFIG_X86_INTEL_SBI_APL
+#include "linux/platform_data/sbi_apl.h"
+int sbi_send(int port, int off, int op, u32 *data)
+{
+	struct sbi_apl_message sbi_arg;
+	int ret, read = 0;
+
+	memset(&sbi_arg, 0, sizeof(sbi_arg));
+
+	if (op == 0 || op == 4 || op == 6)
+		read = 1;
+	else
+		sbi_arg.data = *data;
+
+	sbi_arg.opcode = op;
+	sbi_arg.port_address = port;
+	sbi_arg.register_offset = off;
+	ret = sbi_apl_commit(&sbi_arg);
+	if (ret || sbi_arg.status)
+		edac_dbg(2, "sbi_send status=%d ret=%d data=%x\n",
+				 sbi_arg.status, ret, sbi_arg.data);
+
+	if (ret == 0)
+		ret = sbi_arg.status;
+
+	if (ret == 0 && read)
+		*data = sbi_arg.data;
+
+	return ret;
+}
+#else
+int sbi_send(int port, int off, int op, u32 *data)
+{
+	return -EUNATCH;
+}
+#endif
+
+static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
+{
+	int	ret = 0;
+
+	edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
+	switch (sz) {
+	case 8:
+		ret = sbi_send(port, off + 4, op, (u32 *)(data + 4));
+	case 4:
+		ret = sbi_send(port, off, op, (u32 *)data);
+		pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
+					sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
+		break;
+	}
+
+	return ret;
+}
+
+static u64 get_mem_ctrl_hub_base_addr(void)
+{
+	struct b_cr_mchbar_lo_pci lo;
+	struct b_cr_mchbar_hi_pci hi;
+	struct pci_dev *pdev;
+
+	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
+	if (pdev) {
+		pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
+		pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
+		pci_dev_put(pdev);
+	} else {
+		return 0;
+	}
+
+	if (!lo.enable) {
+		edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
+		return 0;
+	}
+
+	return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
+}
+
+static u64 get_sideband_reg_base_addr(void)
+{
+	struct pci_dev *pdev;
+	u32 hi, lo;
+
+	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
+	if (pdev) {
+		pci_read_config_dword(pdev, 0x10, &lo);
+		pci_read_config_dword(pdev, 0x14, &hi);
+		pci_dev_put(pdev);
+		return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
+	} else {
+		return 0xfd000000;
+	}
+}
+
+static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
+{
+	struct pci_dev *pdev;
+	char *base;
+	u64 addr;
+
+	if (op == 4) {
+		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
+		if (!pdev)
+			return -ENODEV;
+
+		pci_read_config_dword(pdev, off, data);
+		pci_dev_put(pdev);
+	} else {
+		/* MMIO via memory controller hub base address */
+		if (op == 0 && port == 0x4c) {
+			addr = get_mem_ctrl_hub_base_addr();
+			if (!addr)
+				return -ENODEV;
+		} else {
+			/* MMIO via sideband register base address */
+			addr = get_sideband_reg_base_addr();
+			if (!addr)
+				return -ENODEV;
+			addr += (port << 16);
+		}
+
+		base = ioremap((resource_size_t)addr, 0x10000);
+		if (!base)
+			return -ENODEV;
+
+		if (sz == 8)
+			*(u32 *)(data + 4) = *(u32 *)(base + off + 4);
+		*(u32 *)data = *(u32 *)(base + off);
+
+		iounmap(base);
+	}
+
+	edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
+			(sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);
+
+	return 0;
+}
+
+#define RD_REGP(regp, regname, port)	\
+	ops->rd_reg(port,					\
+		regname##_offset,				\
+		regname##_r_opcode,				\
+		regp, sizeof(struct regname),	\
+		#regname)
+
+#define RD_REG(regp, regname)			\
+	ops->rd_reg(regname ## _port,		\
+		regname##_offset,				\
+		regname##_r_opcode,				\
+		regp, sizeof(struct regname),	\
+		#regname)
+
+static u64 top_lm, top_hm;
+static bool two_slices;
+static bool two_channels; /* Both PMI channels in one slice enabled */
+
+static u8 sym_chan_mask;
+static u8 asym_chan_mask;
+static u8 chan_mask;
+
+static int slice_selector = -1;
+static int chan_selector = -1;
+static u64 slice_hash_mask;
+static u64 chan_hash_mask;
+
+static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
+{
+	rp->enabled = 1;
+	rp->base = base;
+	rp->limit = limit;
+	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
+}
+
+static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
+{
+	if (mask == 0) {
+		pr_info(FW_BUG "MOT mask cannot be zero\n");
+		return;
+	}
+	if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
+		pr_info(FW_BUG "MOT mask not power of two\n");
+		return;
+	}
+	if (base & ~mask) {
+		pr_info(FW_BUG "MOT region base/mask alignment error\n");
+		return;
+	}
+	rp->base = base;
+	rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
+	rp->enabled = 1;
+	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
+}
+
+static bool in_region(struct region *rp, u64 addr)
+{
+	if (!rp->enabled)
+		return false;
+
+	return rp->base <= addr && addr <= rp->limit;
+}
+
+static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
+{
+	int mask = 0;
+
+	if (!p->slice_0_mem_disabled)
+		mask |= p->sym_slice0_channel_enabled;
+
+	if (!p->slice_1_disabled)
+		mask |= p->sym_slice1_channel_enabled << 2;
+
+	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
+		mask &= 0x5;
+
+	return mask;
+}
+
+static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
+			 struct b_cr_asym_mem_region0_mchbar *as0,
+			 struct b_cr_asym_mem_region1_mchbar *as1,
+			 struct b_cr_asym_2way_mem_region_mchbar *as2way)
+{
+	const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
+	int mask = 0;
+
+	if (as2way->asym_2way_interleave_enable)
+		mask = intlv[as2way->asym_2way_intlv_mode];
+	if (as0->slice0_asym_enable)
+		mask |= (1 << as0->slice0_asym_channel_select);
+	if (as1->slice1_asym_enable)
+		mask |= (4 << as1->slice1_asym_channel_select);
+	if (p->slice_0_mem_disabled)
+		mask &= 0xc;
+	if (p->slice_1_disabled)
+		mask &= 0x3;
+	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
+		mask &= 0x5;
+
+	return mask;
+}
+
+static struct b_cr_tolud_pci tolud;
+static struct b_cr_touud_lo_pci touud_lo;
+static struct b_cr_touud_hi_pci touud_hi;
+static struct b_cr_asym_mem_region0_mchbar asym0;
+static struct b_cr_asym_mem_region1_mchbar asym1;
+static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
+static struct b_cr_mot_out_base_mchbar mot_base;
+static struct b_cr_mot_out_mask_mchbar mot_mask;
+static struct b_cr_slice_channel_hash chash;
+
+/* Apollo Lake dunit */
+/*
+ * Validated on board with just two DIMMs in the [0] and [2] positions
+ * in this array. Other port number matches documentation, but caution
+ * advised.
+ */
+static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
+static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];
+
+/* Denverton dunit */
+static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
+static struct d_cr_dsch dsch;
+static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
+static struct d_cr_drp drp[DNV_NUM_CHANNELS];
+static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
+static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
+static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
+static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
+static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
+static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];
+
+static void apl_mk_region(char *name, struct region *rp, void *asym)
+{
+	struct b_cr_asym_mem_region0_mchbar *a = asym;
+
+	mk_region(name, rp,
+			  U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
+			  U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
+			  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
+}
+
+static void dnv_mk_region(char *name, struct region *rp, void *asym)
+{
+	struct b_cr_asym_mem_region_denverton *a = asym;
+
+	mk_region(name, rp,
+			  U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
+			  U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
+			  GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
+}
+
+static int apl_get_registers(void)
+{
+	int i;
+
+	if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
+		return -ENODEV;
+
+	for (i = 0; i < APL_NUM_CHANNELS; i++)
+		if (RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
+			return -ENODEV;
+
+	return 0;
+}
+
+static int dnv_get_registers(void)
+{
+	int i;
+
+	if (RD_REG(&dsch, d_cr_dsch))
+		return -ENODEV;
+
+	for (i = 0; i < DNV_NUM_CHANNELS; i++)
+		if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
+			RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
+			RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
+			RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
+			RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
+			RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
+			RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
+			RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
+			return -ENODEV;
+
+	return 0;
+}
+
+/*
+ * Read all the h/w config registers once here (they don't
+ * change at run time. Figure out which address ranges have
+ * which interleave characteristics.
+ */
+static int get_registers(void)
+{
+	const int intlv[] = { 10, 11, 12, 12 };
+
+	if (RD_REG(&tolud, b_cr_tolud_pci) ||
+		RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
+		RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
+		RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
+		RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
+		RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
+		RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
+		RD_REG(&chash, b_cr_slice_channel_hash))
+		return -ENODEV;
+
+	if (ops->get_registers())
+		return -ENODEV;
+
+	if (ops->type == DNV) {
+		/* PMI channel idx (always 0) for asymmetric region */
+		asym0.slice0_asym_channel_select = 0;
+		asym1.slice1_asym_channel_select = 0;
+		/* PMI channel bitmap (always 1) for symmetric region */
+		chash.sym_slice0_channel_enabled = 0x1;
+		chash.sym_slice1_channel_enabled = 0x1;
+	}
+
+	if (asym0.slice0_asym_enable)
+		ops->mk_region("as0", &as0, &asym0);
+
+	if (asym1.slice1_asym_enable)
+		ops->mk_region("as1", &as1, &asym1);
+
+	if (asym_2way.asym_2way_interleave_enable) {
+		mk_region("as2way", &as2,
+				  U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
+				  U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
+				  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
+	}
+
+	if (mot_base.imr_en) {
+		mk_region_mask("mot", &mot,
+					   U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
+					   U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
+	}
+
+	top_lm = U64_LSHIFT(tolud.tolud, 20);
+	top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);
+
+	two_slices = !chash.slice_1_disabled &&
+				 !chash.slice_0_mem_disabled &&
+				 (chash.sym_slice0_channel_enabled != 0) &&
+				 (chash.sym_slice1_channel_enabled != 0);
+	two_channels = !chash.ch_1_disabled &&
+				 !chash.enable_pmi_dual_data_mode &&
+				 ((chash.sym_slice0_channel_enabled == 3) ||
+				 (chash.sym_slice1_channel_enabled == 3));
+
+	sym_chan_mask = gen_sym_mask(&chash);
+	asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
+	chan_mask = sym_chan_mask | asym_chan_mask;
+
+	if (two_slices && !two_channels) {
+		if (chash.hvm_mode)
+			slice_selector = 29;
+		else
+			slice_selector = intlv[chash.interleave_mode];
+	} else if (!two_slices && two_channels) {
+		if (chash.hvm_mode)
+			chan_selector = 29;
+		else
+			chan_selector = intlv[chash.interleave_mode];
+	} else if (two_slices && two_channels) {
+		if (chash.hvm_mode) {
+			slice_selector = 29;
+			chan_selector = 30;
+		} else {
+			slice_selector = intlv[chash.interleave_mode];
+			chan_selector = intlv[chash.interleave_mode] + 1;
+		}
+	}
+
+	if (two_slices) {
+		if (!chash.hvm_mode)
+			slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
+		if (!two_channels)
+			slice_hash_mask |= BIT_ULL(slice_selector);
+	}
+
+	if (two_channels) {
+		if (!chash.hvm_mode)
+			chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
+		if (!two_slices)
+			chan_hash_mask |= BIT_ULL(chan_selector);
+	}
+
+	return 0;
+}
+
+/* Get a contiguous memory address (remove the MMIO gap) */
+static u64 remove_mmio_gap(u64 sys)
+{
+	return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
+}
+
+/* Squeeze out one address bit, shift upper part down to fill gap */
+static void remove_addr_bit(u64 *addr, int bitidx)
+{
+	u64	mask;
+
+	if (bitidx == -1)
+		return;
+
+	mask = (1ull << bitidx) - 1;
+	*addr = ((*addr >> 1) & ~mask) | (*addr & mask);
+}
+
+/* XOR all the bits from addr specified in mask */
+static int hash_by_mask(u64 addr, u64 mask)
+{
+	u64 result = addr & mask;
+
+	result = (result >> 32) ^ result;
+	result = (result >> 16) ^ result;
+	result = (result >> 8) ^ result;
+	result = (result >> 4) ^ result;
+	result = (result >> 2) ^ result;
+	result = (result >> 1) ^ result;
+
+	return (int)result & 1;
+}
+
+/*
+ * First stage decode. Take the system address and figure out which
+ * second stage will deal with it based on interleave modes.
+ */
+static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
+{
+	u64 contig_addr, contig_base, contig_offset, contig_base_adj;
+	int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
+						MOT_CHAN_INTLV_BIT_1SLC_2CH;
+	int slice_intlv_bit_rm = SELECTOR_DISABLED;
+	int chan_intlv_bit_rm = SELECTOR_DISABLED;
+	/* Determine if address is in the MOT region. */
+	bool mot_hit = in_region(&mot, addr);
+	/* Calculate the number of symmetric regions enabled. */
+	int sym_channels = hweight8(sym_chan_mask);
+
+	/*
+	 * The amount we need to shift the asym base can be determined by the
+	 * number of enabled symmetric channels.
+	 * NOTE: This can only work because symmetric memory is not supposed
+	 * to do a 3-way interleave.
+	 */
+	int sym_chan_shift = sym_channels >> 1;
+
+	/* Give up if address is out of range, or in MMIO gap */
+	if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
+	   (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
+		snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
+		return -EINVAL;
+	}
+
+	/* Get a contiguous memory address (remove the MMIO gap) */
+	contig_addr = remove_mmio_gap(addr);
+
+	if (in_region(&as0, addr)) {
+		*pmiidx = asym0.slice0_asym_channel_select;
+
+		contig_base = remove_mmio_gap(as0.base);
+		contig_offset = contig_addr - contig_base;
+		contig_base_adj = (contig_base >> sym_chan_shift) *
+						  ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
+		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
+	} else if (in_region(&as1, addr)) {
+		*pmiidx = 2u + asym1.slice1_asym_channel_select;
+
+		contig_base = remove_mmio_gap(as1.base);
+		contig_offset = contig_addr - contig_base;
+		contig_base_adj = (contig_base >> sym_chan_shift) *
+						  ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
+		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
+	} else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
+		bool channel1;
+
+		mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
+		*pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
+		channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
+			hash_by_mask(contig_addr, chan_hash_mask);
+		*pmiidx |= (u32)channel1;
+
+		contig_base = remove_mmio_gap(as2.base);
+		chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
+		contig_offset = contig_addr - contig_base;
+		remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
+		contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
+	} else {
+		/* Otherwise we're in normal, boring symmetric mode. */
+		*pmiidx = 0u;
+
+		if (two_slices) {
+			bool slice1;
+
+			if (mot_hit) {
+				slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
+				slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
+			} else {
+				slice_intlv_bit_rm = slice_selector;
+				slice1 = hash_by_mask(addr, slice_hash_mask);
+			}
+
+			*pmiidx = (u32)slice1 << 1;
+		}
+
+		if (two_channels) {
+			bool channel1;
+
+			mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
+							MOT_CHAN_INTLV_BIT_1SLC_2CH;
+
+			if (mot_hit) {
+				chan_intlv_bit_rm = mot_intlv_bit;
+				channel1 = (addr >> mot_intlv_bit) & 1;
+			} else {
+				chan_intlv_bit_rm = chan_selector;
+				channel1 = hash_by_mask(contig_addr, chan_hash_mask);
+			}
+
+			*pmiidx |= (u32)channel1;
+		}
+	}
+
+	/* Remove the chan_selector bit first */
+	remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
+	/* Remove the slice bit (we remove it second because it must be lower */
+	remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
+	*pmiaddr = contig_addr;
+
+	return 0;
+}
+
+/* Translate PMI address to memory (rank, row, bank, column) */
+#define C(n) (0x10 | (n))	/* column */
+#define B(n) (0x20 | (n))	/* bank */
+#define R(n) (0x40 | (n))	/* row */
+#define RS   (0x80)			/* rank */
+
+/* addrdec values */
+#define AMAP_1KB	0
+#define AMAP_2KB	1
+#define AMAP_4KB	2
+#define AMAP_RSVD	3
+
+/* dden values */
+#define DEN_4Gb		0
+#define DEN_8Gb		2
+
+/* dwid values */
+#define X8		0
+#define X16		1
+
+static struct dimm_geometry {
+	u8	addrdec;
+	u8	dden;
+	u8	dwid;
+	u8	rowbits, colbits;
+	u16	bits[PMI_ADDRESS_WIDTH];
+} dimms[] = {
+	{
+		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
+		.rowbits = 15, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
+			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
+			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
+			0,     0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
+		.rowbits = 16, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
+			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
+			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
+			R(15), 0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
+		.rowbits = 16, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
+			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
+			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
+			R(15), 0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
+		.rowbits = 16, .colbits = 11,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
+			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
+			R(10), C(7),  C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
+			R(14), R(15), 0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
+		.rowbits = 15, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
+			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
+			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
+			0,     0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
+		.rowbits = 16, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
+			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
+			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
+			R(15), 0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
+		.rowbits = 16, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
+			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
+			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
+			R(15), 0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
+		.rowbits = 16, .colbits = 11,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
+			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
+			R(9),  R(10), C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
+			R(14), R(15), 0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
+		.rowbits = 15, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
+			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
+			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
+			0,     0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
+		.rowbits = 16, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
+			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
+			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
+			R(15), 0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
+		.rowbits = 16, .colbits = 10,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
+			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
+			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
+			R(15), 0,     0,     0
+		}
+	},
+	{
+		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
+		.rowbits = 16, .colbits = 11,
+		.bits = {
+			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
+			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
+			R(8),  R(9),  R(10), C(9),  R(11), RS,    C(11), R(12), R(13),
+			R(14), R(15), 0,     0
+		}
+	}
+};
+
+static int bank_hash(u64 pmiaddr, int idx, int shft)
+{
+	int bhash = 0;
+
+	switch (idx) {
+	case 0:
+		bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
+		break;
+	case 1:
+		bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
+		bhash ^= ((pmiaddr >> 22) & 1) << 1;
+		break;
+	case 2:
+		bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
+		break;
+	}
+
+	return bhash;
+}
+
+static int rank_hash(u64 pmiaddr)
+{
+	return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
+}
+
+/* Second stage decode. Compute rank, bank, row & column. */
+static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
+		       struct dram_addr *daddr, char *msg)
+{
+	struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
+	struct pnd2_pvt *pvt = mci->pvt_info;
+	int g = pvt->dimm_geom[pmiidx];
+	struct dimm_geometry *d = &dimms[g];
+	int column = 0, bank = 0, row = 0, rank = 0;
+	int i, idx, type, skiprs = 0;
+
+	for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
+		int	bit = (pmiaddr >> i) & 1;
+
+		if (i + skiprs >= PMI_ADDRESS_WIDTH) {
+			snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
+			return -EINVAL;
+		}
+
+		type = d->bits[i + skiprs] & ~0xf;
+		idx = d->bits[i + skiprs] & 0xf;
+
+		/*
+		 * On single rank DIMMs ignore the rank select bit
+		 * and shift remainder of "bits[]" down one place.
+		 */
+		if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
+			skiprs = 1;
+			type = d->bits[i + skiprs] & ~0xf;
+			idx = d->bits[i + skiprs] & 0xf;
+		}
+
+		switch (type) {
+		case C(0):
+			column |= (bit << idx);
+			break;
+		case B(0):
+			bank |= (bit << idx);
+			if (cr_drp0->bahen)
+				bank ^= bank_hash(pmiaddr, idx, d->addrdec);
+			break;
+		case R(0):
+			row |= (bit << idx);
+			break;
+		case RS:
+			rank = bit;
+			if (cr_drp0->rsien)
+				rank ^= rank_hash(pmiaddr);
+			break;
+		default:
+			if (bit) {
+				snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
+				return -EINVAL;
+			}
+			goto done;
+		}
+	}
+
+done:
+	daddr->col = column;
+	daddr->bank = bank;
+	daddr->row = row;
+	daddr->rank = rank;
+	daddr->dimm = 0;
+
+	return 0;
+}
+
+/* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
+#define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
+
+static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
+					   struct dram_addr *daddr, char *msg)
+{
+	/* Rank 0 or 1 */
+	daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
+	/* Rank 2 or 3 */
+	daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);
+
+	/*
+	 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
+	 * flip them if DIMM1 is larger than DIMM0.
+	 */
+	daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;
+
+	daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
+	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
+	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
+	if (dsch.ddr4en)
+		daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
+	if (dmap1[pmiidx].bxor) {
+		if (dsch.ddr4en) {
+			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
+			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
+			if (dsch.chan_width == 0)
+				/* 64/72 bit dram channel width */
+				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
+			else
+				/* 32/40 bit dram channel width */
+				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
+			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
+		} else {
+			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
+			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
+			if (dsch.chan_width == 0)
+				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
+			else
+				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
+		}
+	}
+
+	daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
+	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
+	if (dmap4[pmiidx].row14 != 31)
+		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
+	if (dmap4[pmiidx].row15 != 31)
+		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
+	if (dmap4[pmiidx].row16 != 31)
+		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
+	if (dmap4[pmiidx].row17 != 31)
+		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);
+
+	daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
+	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
+	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
+	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
+	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
+	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
+	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
+	if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
+		daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);
+
+	return 0;
+}
+
+static int check_channel(int ch)
+{
+	if (drp0[ch].dramtype != 0) {
+		pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
+		return 1;
+	} else if (drp0[ch].eccen == 0) {
+		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
+		return 1;
+	}
+	return 0;
+}
+
+static int apl_check_ecc_active(void)
+{
+	int	i, ret = 0;
+
+	/* Check dramtype and ECC mode for each present DIMM */
+	for (i = 0; i < APL_NUM_CHANNELS; i++)
+		if (chan_mask & BIT(i))
+			ret += check_channel(i);
+	return ret ? -EINVAL : 0;
+}
+
+#define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
+
+static int check_unit(int ch)
+{
+	struct d_cr_drp *d = &drp[ch];
+
+	if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
+		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
+		return 1;
+	}
+	return 0;
+}
+
+static int dnv_check_ecc_active(void)
+{
+	int	i, ret = 0;
+
+	for (i = 0; i < DNV_NUM_CHANNELS; i++)
+		ret += check_unit(i);
+	return ret ? -EINVAL : 0;
+}
+
+static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
+								 struct dram_addr *daddr, char *msg)
+{
+	u64	pmiaddr;
+	u32	pmiidx;
+	int	ret;
+
+	ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
+	if (ret)
+		return ret;
+
+	pmiaddr >>= ops->pmiaddr_shift;
+	/* pmi channel idx to dimm channel idx */
+	pmiidx >>= ops->pmiidx_shift;
+	daddr->chan = pmiidx;
+
+	ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
+	if (ret)
+		return ret;
+
+	edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
+			 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);
+
+	return 0;
+}
+
+static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
+				  struct dram_addr *daddr)
+{
+	enum hw_event_mc_err_type tp_event;
+	char *optype, msg[PND2_MSG_SIZE];
+	bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
+	bool overflow = m->status & MCI_STATUS_OVER;
+	bool uc_err = m->status & MCI_STATUS_UC;
+	bool recov = m->status & MCI_STATUS_S;
+	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
+	u32 mscod = GET_BITFIELD(m->status, 16, 31);
+	u32 errcode = GET_BITFIELD(m->status, 0, 15);
+	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
+	int rc;
+
+	tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) :
+						 HW_EVENT_ERR_CORRECTED;
+
+	/*
+	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
+	 * memory errors should fit in this mask:
+	 *	000f 0000 1mmm cccc (binary)
+	 * where:
+	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
+	 *	    won't be shown
+	 *	mmm = error type
+	 *	cccc = channel
+	 * If the mask doesn't match, report an error to the parsing logic
+	 */
+	if (!((errcode & 0xef80) == 0x80)) {
+		optype = "Can't parse: it is not a mem";
+	} else {
+		switch (optypenum) {
+		case 0:
+			optype = "generic undef request error";
+			break;
+		case 1:
+			optype = "memory read error";
+			break;
+		case 2:
+			optype = "memory write error";
+			break;
+		case 3:
+			optype = "addr/cmd error";
+			break;
+		case 4:
+			optype = "memory scrubbing error";
+			break;
+		default:
+			optype = "reserved";
+			break;
+		}
+	}
+
+	/* Only decode errors with an valid address (ADDRV) */
+	if (!(m->status & MCI_STATUS_ADDRV))
+		return;
+
+	rc = get_memory_error_data(mci, m->addr, daddr, msg);
+	if (rc)
+		goto address_error;
+
+	snprintf(msg, sizeof(msg),
+		 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
+		 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
+		 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);
+
+	edac_dbg(0, "%s\n", msg);
+
+	/* Call the helper to output message */
+	edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
+						 m->addr & ~PAGE_MASK, 0, daddr->chan, 0, -1, optype, msg);
+
+	return;
+
+address_error:
+	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
+}
+
+static void apl_get_dimm_config(struct mem_ctl_info *mci)
+{
+	struct pnd2_pvt	*pvt = mci->pvt_info;
+	struct dimm_info *dimm;
+	struct d_cr_drp0 *d;
+	u64	capacity;
+	int	i, g;
+
+	for (i = 0; i < APL_NUM_CHANNELS; i++) {
+		if (!(chan_mask & BIT(i)))
+			continue;
+
+		dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0);
+		if (!dimm) {
+			edac_dbg(0, "No allocated DIMM for channel %d\n", i);
+			continue;
+		}
+
+		d = &drp0[i];
+		for (g = 0; g < ARRAY_SIZE(dimms); g++)
+			if (dimms[g].addrdec == d->addrdec &&
+			    dimms[g].dden == d->dden &&
+			    dimms[g].dwid == d->dwid)
+				break;
+
+		if (g == ARRAY_SIZE(dimms)) {
+			edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
+			continue;
+		}
+
+		pvt->dimm_geom[i] = g;
+		capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
+				   (1ul << dimms[g].colbits);
+		edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
+		dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
+		dimm->grain = 32;
+		dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
+		dimm->mtype = MEM_DDR3;
+		dimm->edac_mode = EDAC_SECDED;
+		snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
+	}
+}
+
+static const int dnv_dtypes[] = {
+	DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
+};
+
+static void dnv_get_dimm_config(struct mem_ctl_info *mci)
+{
+	int	i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
+	struct dimm_info *dimm;
+	struct d_cr_drp *d;
+	u64	capacity;
+
+	if (dsch.ddr4en) {
+		memtype = MEM_DDR4;
+		banks = 16;
+		colbits = 10;
+	} else {
+		memtype = MEM_DDR3;
+		banks = 8;
+	}
+
+	for (i = 0; i < DNV_NUM_CHANNELS; i++) {
+		if (dmap4[i].row14 == 31)
+			rowbits = 14;
+		else if (dmap4[i].row15 == 31)
+			rowbits = 15;
+		else if (dmap4[i].row16 == 31)
+			rowbits = 16;
+		else if (dmap4[i].row17 == 31)
+			rowbits = 17;
+		else
+			rowbits = 18;
+
+		if (memtype == MEM_DDR3) {
+			if (dmap1[i].ca11 != 0x3f)
+				colbits = 12;
+			else
+				colbits = 10;
+		}
+
+		d = &drp[i];
+		/* DIMM0 is present if rank0 and/or rank1 is enabled */
+		ranks_of_dimm[0] = d->rken0 + d->rken1;
+		/* DIMM1 is present if rank2 and/or rank3 is enabled */
+		ranks_of_dimm[1] = d->rken2 + d->rken3;
+
+		for (j = 0; j < DNV_MAX_DIMMS; j++) {
+			if (!ranks_of_dimm[j])
+				continue;
+
+			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
+			if (!dimm) {
+				edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
+				continue;
+			}
+
+			capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
+			edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
+			dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
+			dimm->grain = 32;
+			dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
+			dimm->mtype = memtype;
+			dimm->edac_mode = EDAC_SECDED;
+			snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
+		}
+	}
+}
+
+static int pnd2_register_mci(struct mem_ctl_info **ppmci)
+{
+	struct edac_mc_layer layers[2];
+	struct mem_ctl_info *mci;
+	struct pnd2_pvt *pvt;
+	int rc;
+
+	rc = ops->check_ecc();
+	if (rc < 0)
+		return rc;
+
+	/* Allocate a new MC control structure */
+	layers[0].type = EDAC_MC_LAYER_CHANNEL;
+	layers[0].size = ops->channels;
+	layers[0].is_virt_csrow = false;
+	layers[1].type = EDAC_MC_LAYER_SLOT;
+	layers[1].size = ops->dimms_per_channel;
+	layers[1].is_virt_csrow = true;
+	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
+	if (!mci)
+		return -ENOMEM;
+
+	pvt = mci->pvt_info;
+	memset(pvt, 0, sizeof(*pvt));
+
+	mci->mod_name = "pnd2_edac.c";
+	mci->dev_name = ops->name;
+	mci->ctl_name = "Pondicherry2";
+
+	/* Get dimm basic config and the memory layout */
+	ops->get_dimm_config(mci);
+
+	if (edac_mc_add_mc(mci)) {
+		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
+		edac_mc_free(mci);
+		return -EINVAL;
+	}
+
+	*ppmci = mci;
+
+	return 0;
+}
+
+static void pnd2_unregister_mci(struct mem_ctl_info *mci)
+{
+	if (unlikely(!mci || !mci->pvt_info)) {
+		pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
+		return;
+	}
+
+	/* Remove MC sysfs nodes */
+	edac_mc_del_mc(NULL);
+	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
+	edac_mc_free(mci);
+}
+
+/*
+ * Callback function registered with core kernel mce code.
+ * Called once for each logged error.
+ */
+static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
+{
+	struct mce *mce = (struct mce *)data;
+	struct mem_ctl_info *mci;
+	struct dram_addr daddr;
+	char *type;
+
+	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
+		return NOTIFY_DONE;
+
+	mci = pnd2_mci;
+	if (!mci)
+		return NOTIFY_DONE;
+
+	/*
+	 * Just let mcelog handle it if the error is
+	 * outside the memory controller. A memory error
+	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
+	 * bit 12 has an special meaning.
+	 */
+	if ((mce->status & 0xefff) >> 7 != 1)
+		return NOTIFY_DONE;
+
+	if (mce->mcgstatus & MCG_STATUS_MCIP)
+		type = "Exception";
+	else
+		type = "Event";
+
+	pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
+	pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
+				   mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
+	pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
+	pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
+	pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
+	pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
+				   mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);
+
+	pnd2_mce_output_error(mci, mce, &daddr);
+
+	/* Advice mcelog that the error were handled */
+	return NOTIFY_STOP;
+}
+
+static struct notifier_block pnd2_mce_dec = {
+	.notifier_call	= pnd2_mce_check_error,
+};
+
+#ifdef CONFIG_EDAC_DEBUG
+/*
+ * Write an address to this file to exercise the address decode
+ * logic in this driver.
+ */
+static u64 pnd2_fake_addr;
+#define PND2_BLOB_SIZE 1024
+static char pnd2_result[PND2_BLOB_SIZE];
+static struct dentry *pnd2_test;
+static struct debugfs_blob_wrapper pnd2_blob = {
+	.data = pnd2_result,
+	.size = 0
+};
+
+static int debugfs_u64_set(void *data, u64 val)
+{
+	struct dram_addr daddr;
+	struct mce m;
+
+	*(u64 *)data = val;
+	m.mcgstatus = 0;
+	/* ADDRV + MemRd + Unknown channel */
+	m.status = MCI_STATUS_ADDRV + 0x9f;
+	m.addr = val;
+	pnd2_mce_output_error(pnd2_mci, &m, &daddr);
+	snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
+			 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
+			 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
+	pnd2_blob.size = strlen(pnd2_blob.data);
+
+	return 0;
+}
+DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
+
+static void setup_pnd2_debug(void)
+{
+	pnd2_test = edac_debugfs_create_dir("pnd2_test");
+	edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
+							 &pnd2_fake_addr, &fops_u64_wo);
+	debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
+}
+
+static void teardown_pnd2_debug(void)
+{
+	debugfs_remove_recursive(pnd2_test);
+}
+#endif
+
+static int pnd2_probe(void)
+{
+	int rc;
+
+	edac_dbg(2, "\n");
+	rc = get_registers();
+	if (rc)
+		return rc;
+
+	return pnd2_register_mci(&pnd2_mci);
+}
+
+static void pnd2_remove(void)
+{
+	edac_dbg(0, "\n");
+	pnd2_unregister_mci(pnd2_mci);
+}
+
+static struct dunit_ops apl_ops = {
+		.name			= "pnd2/apl",
+		.type			= APL,
+		.pmiaddr_shift		= LOG2_PMI_ADDR_GRANULARITY,
+		.pmiidx_shift		= 0,
+		.channels		= APL_NUM_CHANNELS,
+		.dimms_per_channel	= 1,
+		.rd_reg			= apl_rd_reg,
+		.get_registers		= apl_get_registers,
+		.check_ecc		= apl_check_ecc_active,
+		.mk_region		= apl_mk_region,
+		.get_dimm_config	= apl_get_dimm_config,
+		.pmi2mem		= apl_pmi2mem,
+};
+
+static struct dunit_ops dnv_ops = {
+		.name			= "pnd2/dnv",
+		.type			= DNV,
+		.pmiaddr_shift		= 0,
+		.pmiidx_shift		= 1,
+		.channels		= DNV_NUM_CHANNELS,
+		.dimms_per_channel	= 2,
+		.rd_reg			= dnv_rd_reg,
+		.get_registers		= dnv_get_registers,
+		.check_ecc		= dnv_check_ecc_active,
+		.mk_region		= dnv_mk_region,
+		.get_dimm_config	= dnv_get_dimm_config,
+		.pmi2mem		= dnv_pmi2mem,
+};
+
+static const struct x86_cpu_id pnd2_cpuids[] = {
+	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops },
+	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON, 0, (kernel_ulong_t)&dnv_ops },
+	{ }
+};
+MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);
+
+static int __init pnd2_init(void)
+{
+	const struct x86_cpu_id *id;
+	int rc;
+
+	edac_dbg(2, "\n");
+
+	id = x86_match_cpu(pnd2_cpuids);
+	if (!id)
+		return -ENODEV;
+
+	ops = (struct dunit_ops *)id->driver_data;
+
+	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
+	opstate_init();
+
+	rc = pnd2_probe();
+	if (rc < 0) {
+		pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
+		return rc;
+	}
+
+	if (!pnd2_mci)
+		return -ENODEV;
+
+	mce_register_decode_chain(&pnd2_mce_dec);
+	setup_pnd2_debug();
+
+	return 0;
+}
+
+static void __exit pnd2_exit(void)
+{
+	edac_dbg(2, "\n");
+	teardown_pnd2_debug();
+	mce_unregister_decode_chain(&pnd2_mce_dec);
+	pnd2_remove();
+}
+
+module_init(pnd2_init);
+module_exit(pnd2_exit);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Tony Luck");
+MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");
diff --git a/drivers/edac/pnd2_edac.h b/drivers/edac/pnd2_edac.h
new file mode 100644
index 0000000000000000000000000000000000000000..61b6e79492bb11cf49de8f137cca9adf50a0e8c8
--- /dev/null
+++ b/drivers/edac/pnd2_edac.h
@@ -0,0 +1,301 @@
+/*
+ * Register bitfield descriptions for Pondicherry2 memory controller.
+ *
+ * Copyright (c) 2016, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#ifndef _PND2_REGS_H
+#define _PND2_REGS_H
+
+struct b_cr_touud_lo_pci {
+	u32	lock : 1;
+	u32	reserved_1 : 19;
+	u32	touud : 12;
+};
+
+#define b_cr_touud_lo_pci_port 0x4c
+#define b_cr_touud_lo_pci_offset 0xa8
+#define b_cr_touud_lo_pci_r_opcode 0x04
+
+struct b_cr_touud_hi_pci {
+	u32	touud : 7;
+	u32	reserved_0 : 25;
+};
+
+#define b_cr_touud_hi_pci_port 0x4c
+#define b_cr_touud_hi_pci_offset 0xac
+#define b_cr_touud_hi_pci_r_opcode 0x04
+
+struct b_cr_tolud_pci {
+	u32	lock : 1;
+	u32	reserved_0 : 19;
+	u32	tolud : 12;
+};
+
+#define b_cr_tolud_pci_port 0x4c
+#define b_cr_tolud_pci_offset 0xbc
+#define b_cr_tolud_pci_r_opcode 0x04
+
+struct b_cr_mchbar_lo_pci {
+	u32 enable : 1;
+	u32 pad_3_1 : 3;
+	u32 pad_14_4: 11;
+	u32 base: 17;
+};
+
+struct b_cr_mchbar_hi_pci {
+	u32 base : 7;
+	u32 pad_31_7 : 25;
+};
+
+/* Symmetric region */
+struct b_cr_slice_channel_hash {
+	u64	slice_1_disabled : 1;
+	u64	hvm_mode : 1;
+	u64	interleave_mode : 2;
+	u64	slice_0_mem_disabled : 1;
+	u64	reserved_0 : 1;
+	u64	slice_hash_mask : 14;
+	u64	reserved_1 : 11;
+	u64	enable_pmi_dual_data_mode : 1;
+	u64	ch_1_disabled : 1;
+	u64	reserved_2 : 1;
+	u64	sym_slice0_channel_enabled : 2;
+	u64	sym_slice1_channel_enabled : 2;
+	u64	ch_hash_mask : 14;
+	u64	reserved_3 : 11;
+	u64	lock : 1;
+};
+
+#define b_cr_slice_channel_hash_port 0x4c
+#define b_cr_slice_channel_hash_offset 0x4c58
+#define b_cr_slice_channel_hash_r_opcode 0x06
+
+struct b_cr_mot_out_base_mchbar {
+	u32	reserved_0 : 14;
+	u32	mot_out_base : 15;
+	u32	reserved_1 : 1;
+	u32	tr_en : 1;
+	u32	imr_en : 1;
+};
+
+#define b_cr_mot_out_base_mchbar_port 0x4c
+#define b_cr_mot_out_base_mchbar_offset 0x6af0
+#define b_cr_mot_out_base_mchbar_r_opcode 0x00
+
+struct b_cr_mot_out_mask_mchbar {
+	u32	reserved_0 : 14;
+	u32	mot_out_mask : 15;
+	u32	reserved_1 : 1;
+	u32	ia_iwb_en : 1;
+	u32	gt_iwb_en : 1;
+};
+
+#define b_cr_mot_out_mask_mchbar_port 0x4c
+#define b_cr_mot_out_mask_mchbar_offset 0x6af4
+#define b_cr_mot_out_mask_mchbar_r_opcode 0x00
+
+struct b_cr_asym_mem_region0_mchbar {
+	u32	pad : 4;
+	u32	slice0_asym_base : 11;
+	u32	pad_18_15 : 4;
+	u32	slice0_asym_limit : 11;
+	u32	slice0_asym_channel_select : 1;
+	u32	slice0_asym_enable : 1;
+};
+
+#define b_cr_asym_mem_region0_mchbar_port 0x4c
+#define b_cr_asym_mem_region0_mchbar_offset 0x6e40
+#define b_cr_asym_mem_region0_mchbar_r_opcode 0x00
+
+struct b_cr_asym_mem_region1_mchbar {
+	u32	pad : 4;
+	u32	slice1_asym_base : 11;
+	u32	pad_18_15 : 4;
+	u32	slice1_asym_limit : 11;
+	u32	slice1_asym_channel_select : 1;
+	u32	slice1_asym_enable : 1;
+};
+
+#define b_cr_asym_mem_region1_mchbar_port 0x4c
+#define b_cr_asym_mem_region1_mchbar_offset 0x6e44
+#define b_cr_asym_mem_region1_mchbar_r_opcode 0x00
+
+/* Some bit fields moved in above two structs on Denverton */
+struct b_cr_asym_mem_region_denverton {
+	u32	pad : 4;
+	u32	slice_asym_base : 8;
+	u32	pad_19_12 : 8;
+	u32	slice_asym_limit : 8;
+	u32	pad_28_30 : 3;
+	u32	slice_asym_enable : 1;
+};
+
+struct b_cr_asym_2way_mem_region_mchbar {
+	u32	pad : 2;
+	u32	asym_2way_intlv_mode : 2;
+	u32	asym_2way_base : 11;
+	u32	pad_16_15 : 2;
+	u32	asym_2way_limit : 11;
+	u32	pad_30_28 : 3;
+	u32	asym_2way_interleave_enable : 1;
+};
+
+#define b_cr_asym_2way_mem_region_mchbar_port 0x4c
+#define b_cr_asym_2way_mem_region_mchbar_offset 0x6e50
+#define b_cr_asym_2way_mem_region_mchbar_r_opcode 0x00
+
+/* Apollo Lake d-unit */
+
+struct d_cr_drp0 {
+	u32	rken0 : 1;
+	u32	rken1 : 1;
+	u32	ddmen : 1;
+	u32	rsvd3 : 1;
+	u32	dwid : 2;
+	u32	dden : 3;
+	u32	rsvd13_9 : 5;
+	u32	rsien : 1;
+	u32	bahen : 1;
+	u32	rsvd18_16 : 3;
+	u32	caswizzle : 2;
+	u32	eccen : 1;
+	u32	dramtype : 3;
+	u32	blmode : 3;
+	u32	addrdec : 2;
+	u32	dramdevice_pr : 2;
+};
+
+#define d_cr_drp0_offset 0x1400
+#define d_cr_drp0_r_opcode 0x00
+
+/* Denverton d-unit */
+
+struct d_cr_dsch {
+	u32	ch0en : 1;
+	u32	ch1en : 1;
+	u32	ddr4en : 1;
+	u32	coldwake : 1;
+	u32	newbypdis : 1;
+	u32	chan_width : 1;
+	u32	rsvd6_6 : 1;
+	u32	ooodis : 1;
+	u32	rsvd18_8 : 11;
+	u32	ic : 1;
+	u32	rsvd31_20 : 12;
+};
+
+#define d_cr_dsch_port 0x16
+#define d_cr_dsch_offset 0x0
+#define d_cr_dsch_r_opcode 0x0
+
+struct d_cr_ecc_ctrl {
+	u32	eccen : 1;
+	u32	rsvd31_1 : 31;
+};
+
+#define d_cr_ecc_ctrl_offset 0x180
+#define d_cr_ecc_ctrl_r_opcode 0x0
+
+struct d_cr_drp {
+	u32	rken0 : 1;
+	u32	rken1 : 1;
+	u32	rken2 : 1;
+	u32	rken3 : 1;
+	u32	dimmdwid0 : 2;
+	u32	dimmdden0 : 2;
+	u32	dimmdwid1 : 2;
+	u32	dimmdden1 : 2;
+	u32	rsvd15_12 : 4;
+	u32	dimmflip : 1;
+	u32	rsvd31_17 : 15;
+};
+
+#define d_cr_drp_offset 0x158
+#define d_cr_drp_r_opcode 0x0
+
+struct d_cr_dmap {
+	u32	ba0 : 5;
+	u32	ba1 : 5;
+	u32	bg0 : 5; /* if ddr3, ba2 = bg0 */
+	u32	bg1 : 5; /* if ddr3, ba3 = bg1 */
+	u32	rs0 : 5;
+	u32	rs1 : 5;
+	u32	rsvd : 2;
+};
+
+#define d_cr_dmap_offset 0x174
+#define d_cr_dmap_r_opcode 0x0
+
+struct d_cr_dmap1 {
+	u32	ca11 : 6;
+	u32	bxor : 1;
+	u32	rsvd : 25;
+};
+
+#define d_cr_dmap1_offset 0xb4
+#define d_cr_dmap1_r_opcode 0x0
+
+struct d_cr_dmap2 {
+	u32	row0 : 5;
+	u32	row1 : 5;
+	u32	row2 : 5;
+	u32	row3 : 5;
+	u32	row4 : 5;
+	u32	row5 : 5;
+	u32	rsvd : 2;
+};
+
+#define d_cr_dmap2_offset 0x148
+#define d_cr_dmap2_r_opcode 0x0
+
+struct d_cr_dmap3 {
+	u32	row6 : 5;
+	u32	row7 : 5;
+	u32	row8 : 5;
+	u32	row9 : 5;
+	u32	row10 : 5;
+	u32	row11 : 5;
+	u32	rsvd : 2;
+};
+
+#define d_cr_dmap3_offset 0x14c
+#define d_cr_dmap3_r_opcode 0x0
+
+struct d_cr_dmap4 {
+	u32	row12 : 5;
+	u32	row13 : 5;
+	u32	row14 : 5;
+	u32	row15 : 5;
+	u32	row16 : 5;
+	u32	row17 : 5;
+	u32	rsvd : 2;
+};
+
+#define d_cr_dmap4_offset 0x150
+#define d_cr_dmap4_r_opcode 0x0
+
+struct d_cr_dmap5 {
+	u32	ca3 : 4;
+	u32	ca4 : 4;
+	u32	ca5 : 4;
+	u32	ca6 : 4;
+	u32	ca7 : 4;
+	u32	ca8 : 4;
+	u32	ca9 : 4;
+	u32	rsvd : 4;
+};
+
+#define d_cr_dmap5_offset 0x154
+#define d_cr_dmap5_r_opcode 0x0
+
+#endif /* _PND2_REGS_H */